AD-R188 939 ﬁ DE!WHNOV-TVPE HODIF ICRTION FOR OENERﬂLIZEbiLIIEM /1 %
mommm [ FLOR D IV GAINESYILLE DEPT OF KN

TRIAL AND SYSTI LRHPHONGPRNICH ;T AL.

UNCLASSIF IED DEC 87 NPS-35- 8?-.16 NSF-ECEO4-2.B3O NL




¢ . LT TR e C e R R Y N S T o€ b g8 g bm B e my ey Bl BT e BVg da' Pt ) TR

-‘_.'" ..:Anf; |
| WS 1
1 E% g __ ;
ki
i Iy |

--v' i
AR €'~

n'vl‘ l':...\

0|!|



OTC FiLE cupy |

NPS55-87-016

. NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

m u
O )
c,} )
00
00
F
T
&)
ELECTE !
'FEB 1 8 1988 |

,
&H ‘
1

A DEMYANOV-TYPE MODIFICATION FOR
GENERALIZED LINEAR PROGRAMMING

SIRIPHONG LAWPHONGPANICH
DONALD W. HEARN

DECEMBER 1987
Approved for public release; distribution unlimited.

Prepared for:
Chief of Naval Research
Arlington, VA 22217




S

[}
-

b emmi e | RARAARR® il 2N | o

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

I 12, REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

I 2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release; distribution .

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS55-87-016

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

6b. OFFICE SYMBOL
(If applicable)

Code 55

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Chief of Naval Research

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NOOO1487WREO11

8¢c. ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
61153N RRO14-01 0P-040

11. TITLE (Include Security Classification)

A DEMYANOV-TYPE MODIFICATION FOR GENERALIZED

LINEAR PROGRAMMING

12. PERSONAL AUTHOR(S)

Lawphongpanich, Siriphong; Hearn, Donald W. (University of Florida)
13a. TYPE _OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Technical FROM T0 1987 December 28

16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES

FIELD GROUP SUB-GROUP

“Subgradient

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Linear Programming, Decomposition,~Lagrangian Dual,

e
A
AN

19. ABSTRACT (Continue on reverse if necessary and identify
Hearn and Lawphongpanich (1987) studied the

problem.

finding problem is similar to the one used by
an ascent direction for the dual function.
the modified GLP., !

e

block number)

Leent- ¥ ot X

properties,of the direction formed by taking

the difference of two successive dual iterates of generalized linear programming (GLP), and
pointed out that this direction is also a solution to an associated direction finding
I this study, wefshowsithat this direction finding problem belongs to a new class
of direction finding problems and propose a modification of GLP in which its original
direction finding problem is replaced by another in this new class.

This new direction
Demyanov for minimax problems and guarantees

Finally, we state and prove the convergence for

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

@ uncLassIFED/UNLIMITED [0 SAME AS RPT. [ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

anich

225 TELEPHONE (Include Area Code)
(408)646-2106

22¢ OFFICE SYMBOL

Code 55Lp

DD FORM 1473, 8a mAR

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

 U.S. Government Printing Office: 1986—606-24) ‘

~f'”szfxivn”&x“fu“fn:f:fj
PR, P R IPE o8 L T AL g s ¢



KN LM ¢ ¢
B T T T A AT T e

A Demyanov-Type Modification
for
Generalized Linear Programming

by

Siriphong Lawphongpanich#
Donald W. Hearn#*#

December, 1987

# Department of Operations Research
U.S. Naval Postgraduate School
Monterey, California 93843

#% Department of Industrial and Systems Engineering!
Universgity of Florida
Gainesville, Florida 32611

This research was supported in part by NSF grants ECE-B%ZOBSO and
ECS-8516365 and a grant from the Research Foundation, U.S. Naval
Postgraduate School.

i'-;:-ééé_sion For g
* NTIS GRA&I E

- DTIC TAR O
Unannc nced O

SJusraiteation

}

DBy
sw_Dlstrit~utioxw/ )
o Availebility Coden
4L . ) ~[Aw:il. and/ar B

o 4 NN Ay € Ty G




1. INTRODUCTION

Hearn and Lawphongpanich (1987) studied the ascent nature of
. generalized linear programming (GLP) which is also known as the
dual cutting plane or primal column generation technique. In
particular, they examined the properties of the direction, dar=,
defined as the difference of two successive dual iterates
generated by GLP with respect to the Lagrangian dual function, L.
They showed that daers is an ascent direction for L at points
where L is differentiable. At nondifferentiable points, the
column entering the master problem is not unique and an arbitrary
choice can make dar» a nonascent direction. To obtain an
additional insight on the ascent nature of darnr, they also showed

that dorr is a solution to a direction finding problem for L.

Sndcdeedadedinnd 2 Con et e s I Al

In this paper, we introduce a new class of direction finding

problems and showed that it includes the one which produces daLs.

This class of problems contains direction finding problems which
always produce ascent directionsg as well as those that do not,

e.g§., the daorr direction finding problem. In order to improve the
rate of convergence of GLP, we replace the derr direction finding

problem with another from this new class. This new direction

ieclhadiead

finding problem which we describe below guarantees to produce
agcent directions and is similar to the one used by Demayanov for
the minimax problem. Moreover, a line search step is also
included in this modification of GLP. Hearn and Lawphongpanich
(1987) indicated via a numerical example that a line search step

reduces the number of iterations for GLP.
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we state GLP algorithm in

For the remainder of the paper,
both the cutting plane and the column generation form and define
the associated Lagrangian dual problem in Section 2. Then,

Section 3 describes the new clags of direction finding problems.
Finally, we present the modification of GLP and its convergence

analysgis in Section 4.




2. PRELIMINARIES

Consider the primal problem:

Pl: f* = min f(x)
X
g.t. g(x) £ b,
x £ X,

where f is a continuous real-valued function, g is a continuous
function from R® to R* , X is a nonempty compact subset of R®, and

b is a vector in R™. The Lagrangian dual of (Pl) is:
D1: L* = maximize { L(u) : u2 0, ue R*}

where L(u) = minimum (f(x) + ulg(x)-b] : x € X}, and xy denotes

the usual dot product between vectors x and y.

When L(u) is relatively easy to evaluate, the pair of
problems, (Pl) and (Dl), can be addressed by GLP. Below we state

the algorithm in the dual cutting plane form (Zangwill, 1969).
The Dual Cutting Plane Algorithm

Step 0. Find a point %o £ X such that g(xo) ¢ b. Let k = 1, and

go to Step 1.
Step 1. Solve the k-th master problem:

Ml: max w

w < f(x,) + ulg(xi)-bl for i = 0,...,k-1

uzaao
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Let (wy,u.) be an optimal solution and go to Step 2.

Step 2. Solve the k-th subproblem:

S1: min { f(x) + ulg(x)-b] : x € X }
Let xx be an optimal point, and let L(ux) = f(x:) +
Ue(g(xx)-bl. If we = L(ux), ux is an optimal dual
X solution. Otherwise, if wx > L(ux), then replace k by ‘
k + 1, and go to Step 1. }
: \
The k-th master problem (Ml) is a linear programming problem
with the following dual:
k-1
M2: min Z  wf (%)
n i=0
k-1
g.t. 2 nmg(x:) £ b
i=0
k-1
2 Ny = 1,
i=0
n, 2 0 for i = 0,...,k-1
When (M2) replaces (Ml) in Step 1, the resulting algorithm

is generally known as Dantzig-Wolfe decomposition (1960, 1961),
column generation or GLP. Geoffrion (1970) also classifies the
algorithm in the cutting plane form as the strategy of outer

linearization and relaxation, or, in the column generating form

ag the strategy of inner linearization and restriction.
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3. A CLASS OF DIRECTION FINDING PROBLEMS

Consider now a feasible direction scheme for solving (D1l).
At a given feasible point ux and a parameter o, one posgsible

direction finding problem is

DF1l: Max (8 (x3)-b)(v-ux)
v
8.t. a £ L(v),
v 20,

where xix is a solution of (Sl), so that [g(xw«)-b] is a
subgradient of L at ux. The firgt constraint of (DFl) requires
that v be in the level set of L ag defined by a. If o > L(uw),
any feasible solution v to (DF1l) would produce an ascend
direction of the form v-ux, and the best value for o is L=,
Figure 3.1 illustrates an instance of (DF1l) in which o ig set to
L{ux) (= 7.0 ) and the optimal sgsolution of the resulting problem
is denoted by vi. Note that the direction vi-ux is an ascent

direction for any choice of subgradients.

In practice, L(v) must be approximated since it is not
always available in closed form. Each different approximation
would yield a different direction finding problem. Similarly, the
different choices for o and X would also yield different
direction finding problems. To ensure that vi-uix isS an ascent
direction, the approximating function along with the value for «
and the vector xix must be carefully chosen. Below, we examine two

different direction finding problems derived from (DF1).
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Figure 3.1: An illustration of direction finding problem (DF1)
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First, we consider the direction finding problem associated
with GLP in the cutting plane form. From the master problem (Ml),

it is clear that the approximation of L is

Laa(v) = min ( f(xis) + v[g(xs)-bl: i=0,...,k-1 }.

Then, Hearn and Lawphongpanich (1987) showed that ux.i:, the
gsolution to the (k+l)-st master problem, solves the following

problem derived from (DF1l):

DF2: max [g(xw)-bl(v-usw)
v
s.t. Wiea S Laa(v),
vz O,

where wix+i1, the optimal objective function value of the (k+l)-st
master problem, replaces o. Define X(ux) as the set of solutions
to (S1). When X(ux) is a singleton, L is differentiable at ux,
and [g(xix)-b] is the only choice of 'subgradient’' for the
objective function of (DF2). However, when X(ui) is not a
gingleton, L is nondifferentiable and the choice of objective
functions becomes infinite. Moreover, an arbitrarily chosen
subgradient could result in (DF2) generating a nonascent
direction as shown in Hearn and Lawphongpanich (1987). Below, we
consider a second direction finding problem in which [g(xx)-b] is

replaced with a set that includes the subdifferential of L at uk.

Assume that X can be represented by a finite discrete set
(ya,...,yr}. For example, when (Pl) is a bounded integer program,

then X is itself a finite set of vectors with integral elements.
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Then, X(ux) is a finite discrete set. For the discussion below,

define for any u 2z 0
Xe(u) = ( ys: f(ys)+u(g(ys)-b) < L(u) + €, ys € X 1},

that is, Xe(u) is the set of all e-approximate solutions of (S1).
When € = 0, Xo(u) is simply the set of solutions to (S1) which is
previously denoted as X(u). Since L is concave, the e-
subdifferential of L is well defined and can be written as
follows (see, e.g., Clark, 1975; Kiwiel, 1985; Lemarechel, 1980;

and Zowe, 1987):
Sel(u) = { h: L(v) £ L(u) + h(v-u) + €, Vv 2201}

Similarly, when € = 0, 8oL(u) = SL(u), thre subdifferential of L
at u, and SL(u) is also equivalent to conv{ [g(ys)-bl: y, €
X(u))}, where conv{:)} denotes the convex hull of a set. Below,

Theorem 3.1 relates X<c(u) to the e-subdifferential of L(u).
Theorem 3.1: Conv{ [g(ys)-bl: ys € Xe(u) } is a subset of ScL(u).

Proof: For every v 2 0 and for each y,; & X< (u)

L(u) + [g(ys)-bl(v-u)

L(u) - [g(ys)-blu + [g(ys)-blv

2 flys) - € + [g(ys)-blv
2 L(v) - ¢, or
L(u) + [g(ys)-bl(v-u) + & 2 L(v), (3.1)

where the first inequality follows from the definition of Xe(u)

and the gecond inequality from the definition of L. Since

- Y
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K equation (3.1) holds for all ys € Xe(u), it must hold for all

1

)

Y

i convex combinations of y; € Xe(u), and the theorem follows. ll
o
r Given the above definitions, (DFl) can be modified as
o

ﬁ follows:

N
? DF3: max min { [g(ys)-bl(v-ux): ys & Xe(ux) )y
g s.t. L(ux) < Laz{v)
-..
i v 20 ,

.
i) where
B

2 Laz = min { f(x) + vig(x)-bl: x € M<~* U {xo} }, and

!

4 k_ 1

I M<=® = any subset of U Xec(ui).

: i=1
. []
%‘ If X(ux) replaces Xe(ux) in the objective function of (DF3), the
@ 'min’ part in the objective is the expression for the directional
¢
K
% derivative of L at ux in the direction (v-uix). Note that (DF3)
)
b
? can be written in the cutting plane format as follows:
& DF4.: max w

Ca

o

7 s.t. w s [g(ys)-bl(v-usw) V ys € Xe{uk)

o

! L(uw) s f(x) + vig(x)-b] Vxe M~ U {x0}
)
1§ v 2 0.
VI
) »
)
:S Under the assumption that X is a finite discrete set, L (u)
g can be equivalently written as a minimum of a finite number of
)

h linear functions. Then, (DF3) and (DF4) resemble the direction
k finding problem of an algorithm proposed by Demyanov (see,
'; Demyanov and Malozemov, 1974, and Lemarechel, 1980) in that they
Q
\ require a full knowledge of the e€-subdifferential. However,

K

o‘:,
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Demyanov’s direction finding problem is nonlinear whereas (DF4)

ig linear.

As stated in (DF3), M*~! can be any subset of the union of
the previously calculated e-subdifferentials. Theoretically, Mx-?
can be an empty set and the algorithm to be presented in the next
gsection would still converge. However, taking M*~! as an empty
set means that L(v) is approximated by only one hyperplane
defined by xo. In practice, this may not yield good directions.
Thug, the choice of the set M*~? should allow a good
approximation of L(v) and, in turn, its contours in the

neighborhood of us.
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4. An Ascent Algorithm and its Convergence

The algorithm below is a modification of the cutting plane
algorithm in which we replace the master problem (Ml) with the
direction finding problem (DF3) [or, equivalently, (DF4)] and add

a line search step.
An_Ascent Algorithm
Step Q0. Let xo € X satify g(xo) ¢ b. Select ui 2 0 and compute

Xae(uy). Set M® = @ and k = 1.

Step 1. (Direction Finding) Solve problem (DF3) (or,
equivalently, (DF4)) and let wx denote the value of the
optimal objective function, and vi denote the solution. If

we £ O, stop and ux is an optimal solution. Otherwise, go to

Step 2.

Step 2. (Line search) Solve

LU + te(vi-ux)) = max{ L(ux + t(vi-ux)): 0 < t < 1 } ]
t
and set Uxe1r = Ux + tx(vik-ux). Go to Step 3. ¥

Step 3. (Evaluate L(ux+1)) Solve the subproblem (S1) and

construct the set Xe(ux.i). Set k = k+l1, and go to Step 1.

In Step 0, the point %o satifies the Slater constraint
qualification, and by construction xo is included in the
approximating function Laz. This prevents vi from being unbounded

since v[g(xe)-b)] —> -o as if any component of v goes to o. For

the convergence analysis below, it is assumed that the set (u: o
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€ L(u)}) is bounded for all «.

well.

problem (DF3).

Theorem 4.1: uw ig a solution to
(DF3) .

Proof: For convenience,

where p < q and q < T.

P m

2 ns[g(ys)-bl + T oarexr

J=1 r=1

P

2 Ra

j=1
Gr[Uk]r
n and o

where e, is the r-th unit vector

component of the vector z. Given

define the triplet (n’,8’,a') as

Thus,

1) X(Uk) = {ylgoo-'yp}.
2) Xe{uk) = {ya,... ,¥o,¥p+24s...
3) M~ = {x1,...,Xel}.

Let ux be a solution to (D1).

ux ig bounded for all k as

The first three theoremg justify the direction finding

(D1) if and only if ux sSolves

assume that

’yq} ? and

Then, there exists a (x,a)

gatisfying the following Karush-Kuhn-Tucker (KKT) conditions:

n
o

in R™ and [z]» denotes the r-th
this pair of multipliers, (m,a),

follows:
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Then, (n',B’',a’') satisfies the following KKT conditions for (DF3)

at the pcocint uw:,

q c m
2 nilg(ys)-b)l + Z Bi[g(xs)-b)] + £ arer = O
j=1 i=1 r=1
q
Z ny = 1
j=1
Bilg(xi)-bl - =0
orluxlys = 0

', B',and o' 2 O.

Since ux is feasible to (DF3), uix must be optimal to (DF3) as

well.

Assume that ux solves (DF3). Then, there exists a (n’',B8’,a’)

satisfying the above KKT conditions for (DF3). Since n' and 8'

are nonnegative and Zy4n; = 1, we can define
a = EJR; + Z4B1
"y = niy/a, Jj = 1, yP.P*l,....,q
Bs = Bi/a, i=1,...,s8
Oy = Ox/a, r =1, ,m
Then, (n",B",a") is an optimal set of multipliers at the point
(z,v) = (L(ux),ux) for the following problem which is related to
(DF4) :
IO O G A AR QT .‘u TR SRS oa "‘."‘,“' $16x! v.? v , "4‘ * i '5.{';';‘” . -""’
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DF5: max z
s.t. z s f(y;) + [g(ys)-blv, i =1,...,p.,P*1l,...q
z < f(x:) + [g(x1)-blv, i=1,...,2
v 290, |

that is, (L(ux),ux) solves DF5. However, note that (Dl) can also
be written as:

D2: max z

g.t. 2z < L(v)
v z20.
Then, (DF5) is a relaxation of (D2). Since (L({ui),uix) solves

(DF5) and is feasible (D2), it must be optimal to (DZ)..
Theorem 4.2: If ux does not solve (D1l), then
min{ (g(ys)-bl (vae-wed: ys € Xeluw) ) > O,
where vix solves (DF3).

Proof: By Theorem 4.1, ux does not solve (Dl1) implies that uwx is
not a solution to (DF3). However, uw. is still feagible to (DF3),

8o the following inequality must hold:

min{ [g(ys)-bl(vi-ux): ys & Xe(ux) )}

= max { min( [(g(ys)-bl(v-ux): ys € Xel(uw) }}
v feasible

> min{ [g(ys)-bl(ux-ux): ys € Xe(ux) } = 0..

It should be noted that the above two results also hold when

Laa(v) is replaced by the actual Lagrangian function L in (DF3).

z
s
|
3
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The following series of lemmas and a theorem demonstrate
that the ascént algorithm above converges to an optimal sgolution
of (D1). Furthermore, they are similar to the standard argument ’
for establishing convergence of feasible direction algorithms in

. nonlinear programming.

Lemma 4.3: There exists an € > 0 such that if ue —> u*, then

Xe(ux) = X(ux), for k sufficiently large.

Proof: Let X(u*) = (yi,...,yp}. Define

A A A A S ]

i) ha(u) = max {(f(ys) + ulg(ys)-bl: j = 1,...,p}
ii) ha(u) = min (f(ys) + ulg(ys)-bl: j = p+1,...,T} ;
iii) o = [hai(u*)+ha(ux)]1/2 :
!
At ux, the following hold:
A) hy(u*) = L(u*) = f(ys) + u*lg(ys)-bl, j = 1,...,p
B) hi(u*) < o < ha(ux)
C) o = [ - ha(ux)] > 0
From the continuity of hi(u), hz(u), and L(u), there must exist
an integer K sufficiently large so that for every k 2 K .
D) |hai(uw) - ha(u¥)| < o/2 ;
E) |L(uwk) -L(ux)| < o/4 ;
F) for j = 1,...,p ;i
[£(ys) +ulg(ys)-bl - L (ux) | S
. = |f(ys)+ulg(ys)-b] - f(y,)-uxlg(y,)-bl]|
< o/4.
G) ha(ux) > a.
‘e""c'.“'?‘u'?'n"‘-':'n'f'n'f‘.'f‘uf'wf‘.'f"!‘.lf‘n.o'.l .:HC. 0-‘ 'A‘ ‘n'..o's n‘- el “ e ‘ \"'" c':‘n ’ ‘ ‘v ""’ .n‘u
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From (E) and (F), we have that for j = 1,...,p

|i(y4)+un[g(y4)-b] =L (u) |
< |£(y;)+ux[g(ya)-b] - L(U*)| + |L(u*) - Li(we) |

S 0/2,
and since L(ux) < f(ys) +wlg(ys)-bl, ¥V j, it follows that

|f(y,)+uk[g(y4)-b] L(we) | = f(ys)+uxlg(ys)-bl ~L(ux) s 0/2, or

f(ys)+uxlg(ys)~bl] £ L(ux)+o/2.

Thusg, for any £ between (1/2)0 and (3/74)0,

f(ys) + Wlg(ys)-b] < L(ux) + €, for j =1,...,p, (4.1)
that is, ys; ig an element of Xe(uwx) for j = 1,...,p. Moreover,
from (E),

L(ux) £ L(u») + o/4

L{ux) + €8 < L(us) + 0/4 + ¢

W

L(u*) + ¢

| = o

”~

f(ys)+ulg(ys)-bl, for j = p+1,...,T. (4.2)

where the third inequality follows the above selection of €, the
equality from (C), and the last inequality from (G) and the
definition of ha(u). This means that y, does not belong to

Xe(ux), for j = p+1,...,T. Therefore, Xe(ux) = X(u»). l

i “ rf'l.lﬁt I

o € 8
A,
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Lemma 4.4: For a given direction d,
min{ g°d: g" € conv([(g(ys)-bl: j =1,....p) }

= min( (g(ys)-bld: j = 1,...,p }

Proof: The result follows from the fact that the problem on the

left hand side can be stated as a linear program

p
min 2 ({g(ys)-bld)m,
i=1
P
s.t. 2 gy =1
i=1

"g 20, j=1,...,p,

which always yields an extreme point solution. l

NS

Lemma 4.5: If Xe(uwx) = {(ya,...,yp} and min{ [g(ys)-bld: j =
l1,...,p } > 0, then there exists a v > 0 such that }
<
L(ux+od) 2 L(ux)+omin{ [g(ys)-bld: j = 1,...,p } .

for all 0 £ ¢ < «.

Proof: Assume without loss of generality that

0 ¢ [g(ya)-bld = min{ [g(ys)-bld: j = 1,...,p }
Define
(f(ys)+ulg(yys)-b] - L(uk)} for all j such that
¥ = min y8(y1)d > g(ys)d & j g Xef(ux)
(g(yr) - g(ys)ld

and observe that ¥+ > 0 sgsince

f(ys) + ulg(ys)-bl > L(uk) for j # Xef(ux),

!
¢
¢
d
L
o
l
h
:1
)
i
!
i
¥
I
v
\
\
\
b
)
)
!
i




and [(g(y.)-g(ys)])d > O by construction. Thus, for any 0 < 0 < «

and every j g Xaf(ux) and g(yidd > glys)d

{(f£(ys) + ulg(ys)-bl] - L(usx)

[g§(ya) - g(ys)1d
olg(ya)-b - g(ys)+bld < f(ys) + uwlg(y;)-b] - L(ux)

L(ux) + olg(yi)-bld s f(ys) + (ux+od)(g(uy)-b] (4.3)

However, for j # Xe(ux) and 0 ¢ [g(y1)-bld < [g(ys)~-bld
L(uk) ¢ f(ys) + w(g(y,s)-b]

- L(ux) + olg(ys)-bld < f(ys) + (ux+tod)[g(ys)-b] (4.4)

and for j & Xe(us)

L(ux) < £(ys) + ulg(ys)-bl

L(uwx) + olg(ya)-bld £ f(ys) + (ux+od)[g(ys)-bl. (4.5)
Combining (4.3), (4.4) and (4.5), we have that for 0 S o < =«

L(ux) + olg(ya)-bld < min( f(ys)+(uxtod)(g(ys)-bl: j=1,...,T)

= L(uxtod). l

Lemma 4.6: Assume that € is chosen as in Lemma 4.3 and the
algorithm generates a sequence {ux)}. Then, there cannot be a

subsequence {ux}, k € Q, with the following properties:

i) Uk — Ua, k e Q,

(XA

11) v — va, k € Q, and o

1ii) min( g° (Ve-uae): g° € conv(lg(y)-bl: y & X(u2)) )} > 0,

where Q@ is a subget of (1,2,3,...}.

S = 2 AN PN -
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Proof: Asgume that X(u.) = (1,...,p}. By (iii) and Lemma 4.4,

min{ g° (Ve-uae): g" & conv(lg(y)-bl: yv € X(ue)) }

= min { [g(ys)-bl(Ve-uw): j = 1,...,p )} = 8 > 0.

From Lemma 4.3, there must exist a K! sufficiently large such
that Xe(ux) = {1,...,p} for some k 2 K* and k € Q. Since the set

{1,...p} is finite, there must exist a index j* such that
j* = arg min{ [g(ys)-bl(ve-uwx): j = 1,...,p } (4.6)

infinitely often. Define Q* to be the subset of @ for which j* is

the index which yields the minimum value for the right hand side

of (4.6). For convenience, we assume that j* = 1. Then, we have
that

Lim [g(ya1)-bl(vie-uw) = [g(yi)-bl(ve-uas) = 6 > 0O,

k e Q?

and it follows that there exists K2 2 K? such that
[8(y1)-bl(vi-uw) > B/2 for k 2 K® and k € Q. (4.7)

Thus, at ux the direction (vik-ux) is an ascent direction.

Moreover, since ux+: maximizes L(u) along the direction (vk-ux),

L(ux+1) 2 L(ux + 0(vie-ux)) for 0 ¢ o < v and k ¢ Q?
2 L(uk) + olg(yi)-bl(vi-u) for 0 ¢ ¢ ¢ r and k € Q!

2 L(ux) + (oB)/2 for 0 ¢ ¢ ¢ v+ and k & Q*, (4.8)

where v is as defined in Lemma 4.5 and the last two inequalities
follow from Lemma 4.5 and equ.(4.7). Letting k approach infinity

on the subsequence Q!, (4.8) yields

LT LT LIPS P ] LI IR TR e T )
-
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L(ue) 2 L(us) + (oB)/2
which 18 a contradiction since both o and B8 are positive.l

Theorem 4.7: Assume that € is chosen as in Lemma 4.3. If the
algorithm generates a sequence {ux}, then it must converge

to an optimal solution of (Dl).

Proof: Assume that the algorithm generates an infinite sequence
of points and none of which is a solution to (D1). Since {(uw!}
lieg in a bounded region, there must exist a convergent
subsequence, i.e., Uk —@> Ue, for k € Q, where Q2 is a subset of

{1,2,3,...) and ue. does not solve (Dl).

Assume that X(ue)

{(1,...,p). By Lemma 4.3, Xe(ux) = X(us)
for k sufficiently large, i.e., k 2 Ki, thus Xec(ue) = X(ua).

Since Ue is not a solution to (D1),

0 ¢ Be = max min{ [g(y,s)-bl(z-ua): j = 1,...,p }
z J
g.t. L(ue) < L(2)

z 2 0. N
A
.
For k 2 Ki, define ‘@
]
DF6: B = max min{ [g(ys)-bl(z-uk): j = 1,...,p } f*
z J O
s.t. L(ux) € L(z) =
@
z 2 0. ES
~
-
Note that Bix varies continuously with uwx. Thus, Bx —) Be for k € ﬁ:
n
Q and k 2 K.. ;
b
"
.'.
-"
-
'l
)
q
'-‘
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Now, let v be a solution to (DF3) defined at ux. Then, by

e e wp W |

e

construction, v is bounded and there must exist a subset, Q, of

-

Q such that v —) ve on Q3. Moreover, since (DF3) is a

relaxation of (DF6),

3 -

] B £ min{ [g(ys)-bl(vik-uwx): j = 1,...,p }, (4.9)
4
A
A for k 2 K1 and k ¢ Q. From the finiteness of of the set
" {1,...,p}, there must exist an integer j* such that
4
W i* = arg min{ [g(ys)-bl(vi-uw): j = 1,...,p } (4.10)
§
)
» infinitely often. Let Q2 be a subset of Q* for which j* is the
.
ik index which minimizes the right hand side of (4.10) and for
? convenience assume that j* = 1. Then, combining (4.9) and (4.10)
‘>
" gives
D
¢
; [8(y1) -bl(Vie-Uk) 2 B for k 2 K1 and Q=.
!
¥
Taking the limit on both side with respect to Q%®, we have that
2
; lim [g(y1)-bl(vk-ux) = [g(y1)-bl(Ve-ua) 2 Ba > O
)
N
* which contradicts Lemma 4.6. .
'Y
W
" Therefore, if the algorithm terminates after a finite
1
[
0 number of iterations, Theorem 4.1 and 4.2 guarantee that ui
$ solves (D1). Otherwise, the algorithm generates an infinite
< gsequence which, by Theorem 4.7, converges to an optimal solution
« of (D1). Also, it is interesting to note that although the
2 algorithm uses e-subdifferential in calculating its ascent
K
M directions an exact optimal solution can be obtained by choosging
o
,_‘!
"
K
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€ correctly. In general, one expects algorithms using an e-
subdifferential to produce e-optimal solutions, possgibly in a g

finite number of iterations. We consider this type of algorithms N

in a geparate study to appear later. T

P XA

LA 1 - 1.t _‘l""'-‘ ~

N BB S US M

s

A

[N

SAS QNS e S

P XX XA ANS

" Ve

s AL

- .

SO0 He
' \'.‘«”4?!"% 15‘&?1‘

L)

- ) PR - ¢'(- -
i SRR M SR A St A s SRS Y S

ff~f o A

»




- |

‘o
-

o>

- e
=

[

o' A,

N N

"tdﬂ.f-q-q -, .t s v
X

0 at USRS oy '} 1. at, (R LW “at gl talo el tal tat taloigt, talt N » A\ 1 A, 0 1l x N a8 v

References

Clark, F. H. (1975), "Generalized Gradients and Applications,’

Transaction of American Mathematical Society, 205, pp. 247-
262.

Dantzig, G. B. (1963), Linear Programming and Extensions,
Princton University Press, Princeton, NJ.

Dantzig, G. B., and Wolfe, P. (1960), "Decomposition Principle
for Linear Programs,” Operations Research 8, pp. 101-111.

Dantzig, G. B., and Wolfe, P. (1961), "The Decomposition

Algorithm for Linear Programming, ™ Econometrica 29, pp. 767-
778.

Demyanov, V. F. and Malozemov, V. N. (1974), Introduction to
Minimax, John Wiley & Sons, New York, NY.

Geoffrion, A. M. (1970), "Elements of Large-Scale Mathematical
Programming,” Management Science 16, pp. 652-691.

Hearn, D. W. and Lawphongpanich, S. (1987), "Lagrangian Dual
Ascent by Generalized Linear Programming,” Research Report
No. 87-14, Deparment of Industrial and Systems Engineering,
University of Florida, Gainesville, Florida 32611.

Lemarechel, C. (1980), "Nondifferential Optimization,” Nonlinear

Optimization, Theory and Algorithms, Dixon, Spedicato and
Szegd (EDs.), Birkhauser, Boston, MA., pp. 151-199.

Kiwiel, K. C. (1985), Methods of Descent for Nondifferentiable
Optimization, Lecture Notes in Mathematics 1133, Springer-
Verlag, New York, NY.

Zangwill, W. I. (1969), Nonlinear Programming: A Unified
Approach,, Prentice Hall, Englewood Cliffs, NJ.

Zowe, J. (1987), "Nondifferentiable Optimization,” Computational
Mathematlcal Programming, NATO ASI Series Vol. F15,

Schittkowski (Ed.), Springer-Verlag, New York, NY, pp. 323-
356.

ATARE SRR T - . LRI
AT A ""'"\.ﬁ e

A e T e e

nl




o

, o,

-t e

~ -

P

- -

- -

4

) i
"' W 'l“s' Iy 's""" OO R c ORI LY

DISTRIBUTION LIST

Library (Code 0142)
Naval Postgraduate School
Monterey, CA 93943-5000

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

NO. OF COPIES

Office of Research Administration (Code 012)

Naval Postgraduate School
Monterey, CA 93943-5000

Center for Naval Analyses
4401 Ford Ave.
Alexandria, VA 22311

Library (Code 55)
Naval Postgraduate School
Monterey, CA 93943-5000

Operations Research Center, Rm E£40-164
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro
Cambridge, MA 02139

Koh Peng Kong

OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024

Arthur P. Hurter, Jr.

Professor and Chairman

Dept of Industrial Engineering
and Management Sciences

Northwestern University

Evanston, IL 60201-9990

Institute for Defense Analysis
1800 North Beauregard
Alexandria, VA 22311

Chief of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

L)

I TN SRR Y IS I |
| ' 4
OG0 NS AS AT A

2

l‘v vl’. (N -ll

oy Fg Wy,
o \

" Tu“““““v‘.w‘.““\"-ﬂ“.."A"u"I‘.\".\".ﬂ‘.'»"L_‘J'."

LA LIS LY X
2

¥ ¥ Wy ¥ W




N

Y

=~ e
T

ST

AT :‘v INOIAGRID Ay + ! ) \ " . - Y -
AT A A Yy .'l\';,, A’&),.‘\!’:'L:‘t“.'l._:'b_.'l,g L O ORI e T Dot l. 4 A\ mﬁi"&m}mr}m-

LA L R U A B L LA N N OO TN O U L NI T T I Uy

END

FILMED

N\HRQH) /7 ?? |

T1¢_

pa—




